mirror of
https://github.com/hi2shark/nazhua.git
synced 2026-01-11 22:50:42 +08:00
🪄 优化削峰的计算,尽量切掉与平均值不匹配的数据
This commit is contained in:
parent
cf1e7cf9fd
commit
da35150a8d
@ -280,13 +280,6 @@ const monitorChartData = computed(() => {
|
||||
* - valueList {Array}: 包含以下内容的对象列表:
|
||||
* - name {String}: 监控名称。
|
||||
* - data {Array}: [时间戳, 平均延迟] 对的数组。
|
||||
*
|
||||
* 该函数执行以下步骤:
|
||||
* 1. 遍历监控数据以分类和过滤平均延迟。
|
||||
* 2. 如果启用了削峰,则应用削峰以过滤异常值。
|
||||
* 3. 构建监控名称到其各自时间戳和平均延迟的映射。
|
||||
* 4. 将映射转换为监控名称、时间戳和平均延迟数据的列表。
|
||||
* 5. 删除重复的时间戳并对其进行排序。
|
||||
*/
|
||||
const cateMap = {};
|
||||
monitorData.value.forEach((i) => {
|
||||
@ -319,27 +312,30 @@ const monitorChartData = computed(() => {
|
||||
}
|
||||
}
|
||||
const {
|
||||
threshold,
|
||||
mean,
|
||||
max,
|
||||
min,
|
||||
} = peakShaving.value ? getThreshold(showAvgDelay, 2) : {};
|
||||
median,
|
||||
tolerancePercent,
|
||||
} = peakShaving.value ? getThreshold(showAvgDelay) : {};
|
||||
showCreateTime.forEach((o, index) => {
|
||||
if (Object.prototype.hasOwnProperty.call(dateMap, o)) {
|
||||
return;
|
||||
}
|
||||
const avgDelay = showAvgDelay[index];
|
||||
// 没有数据或延迟为0,算作监控失败,计入成功率
|
||||
if (avgDelay === null || avgDelay === 0) {
|
||||
dateMap[o] = undefined;
|
||||
return;
|
||||
}
|
||||
// 只对有效的延迟值进行削峰判断
|
||||
if (peakShaving.value) {
|
||||
if (avgDelay === 0) {
|
||||
dateMap[o] = null;
|
||||
return;
|
||||
}
|
||||
// 削峰过滤:检测到异常值时直接跳过,不加入dateMap,避免影响成功率计算
|
||||
if (Math.abs(avgDelay - mean) > threshold && max / min > 2) {
|
||||
// 削峰过滤:根据中位数和动态容差百分比判断异常值
|
||||
const threshold = median * tolerancePercent;
|
||||
// 当偏离中位数超过阈值时,视为异常值
|
||||
if (Math.abs(avgDelay - median) > threshold) {
|
||||
dateMap[o] = undefined;
|
||||
return;
|
||||
}
|
||||
}
|
||||
dateMap[o] = avgDelay ? (avgDelay).toFixed(2) * 1 : null;
|
||||
dateMap[o] = (avgDelay).toFixed(2) * 1;
|
||||
});
|
||||
});
|
||||
let dateList = [];
|
||||
@ -362,9 +358,11 @@ const monitorChartData = computed(() => {
|
||||
showCates.value[id] = true;
|
||||
}
|
||||
// 计算平均延迟和成功率
|
||||
const validAvgs = avgs.filter((a) => a[1] !== 0 && a[1] !== null);
|
||||
// 排除被削峰过滤的点(undefined),只统计真实的监控数据
|
||||
const realAvgs = avgs.filter((a) => a[1] !== undefined);
|
||||
const validAvgs = realAvgs.filter((a) => a[1] !== 0 && a[1] !== null);
|
||||
const avg = validAvgs.reduce((a, b) => a + b[1], 0) / validAvgs.length;
|
||||
const over = avgs.filter((a) => a[1] !== 0 && a[1] !== null).length / avgs.length;
|
||||
const over = validAvgs.length / realAvgs.length;
|
||||
const cateItem = {
|
||||
id,
|
||||
name: i,
|
||||
@ -568,6 +566,12 @@ onUnmounted(() => {
|
||||
justify-content: space-between;
|
||||
gap: 10px;
|
||||
|
||||
@media screen and (min-width: 768px) {
|
||||
position: sticky;
|
||||
top: var(--layout-header-height);
|
||||
z-index: 1000;
|
||||
}
|
||||
|
||||
.module-title {
|
||||
width: max-content;
|
||||
height: 30px;
|
||||
|
||||
@ -1,33 +1,75 @@
|
||||
import uniqolor from 'uniqolor';
|
||||
|
||||
/**
|
||||
* 计算数据的阈值和平均值
|
||||
* 计算数据的统计信息,使用截尾中位数作为基准值
|
||||
* 根据平均延迟的不同范围,使用不同的容差百分比进行削峰
|
||||
*
|
||||
* @param {number[]} data - 要计算的数据数组
|
||||
* @param {number} [tolerance=2] - 容差倍数,默认值为2
|
||||
* @returns {{threshold: number, mean: number}} 返回包含阈值和平均值的对象
|
||||
* @property {number} threshold - 计算得到的阈值
|
||||
* @property {number} mean - 数据的平均值
|
||||
* @returns {{median: number, tolerancePercent: number, min: number, max: number}}
|
||||
* 返回包含统计信息的对象
|
||||
* @property {number} median - 截尾中位数(去掉极端值后的中位数)
|
||||
* @property {number} tolerancePercent - 根据中位数计算的容差百分比
|
||||
* @property {number} min - 最小值
|
||||
* @property {number} max - 最大值
|
||||
*/
|
||||
export function getThreshold(data, tolerance = 2) {
|
||||
// 计算数据的平均值
|
||||
const mean = data.reduce((sum, value) => sum + (value || 0), 0) / data.length;
|
||||
// 计算数据的方差
|
||||
const variance = data.reduce((sum, value) => sum + ((value || 0) - mean) ** 2, 0) / data.length;
|
||||
// 计算标准差
|
||||
const stdDev = Math.sqrt(variance);
|
||||
// 计算阈值
|
||||
const threshold = tolerance * stdDev;
|
||||
// 过滤掉值为0的数据
|
||||
export function getThreshold(data) {
|
||||
// 过滤掉null和0的数据,只对有效延迟值计算统计量
|
||||
const filteredData = data.filter((value) => value !== 0 && value !== null);
|
||||
// 计算过滤后数据的最小值
|
||||
const min = Math.min(...filteredData);
|
||||
// 计算过滤后数据的最大值
|
||||
const max = Math.max(...filteredData);
|
||||
// 返回包含阈值、平均值、最小值和最大值的对象
|
||||
|
||||
if (filteredData.length === 0) {
|
||||
return {
|
||||
median: 0,
|
||||
tolerancePercent: 0.2,
|
||||
min: 0,
|
||||
max: 0,
|
||||
};
|
||||
}
|
||||
|
||||
// 排序数据
|
||||
const sortedData = [...filteredData].sort((a, b) => Math.ceil(a) - Math.ceil(b));
|
||||
const len = sortedData.length;
|
||||
|
||||
// 计算需要裁剪的数量(10%)
|
||||
const trimCount = Math.floor(len * 0.1);
|
||||
|
||||
// 用于计算中位数的数据:如果10%的数量>=1,则去掉最大和最小的10%
|
||||
let dataForMedian;
|
||||
if (trimCount >= 1) {
|
||||
// 截尾:去掉最小的10%和最大的10%
|
||||
dataForMedian = sortedData.slice(trimCount, len - trimCount);
|
||||
} else {
|
||||
// 数据量太少,不裁剪
|
||||
dataForMedian = sortedData;
|
||||
}
|
||||
|
||||
// 计算截尾中位数
|
||||
const medianLen = dataForMedian.length;
|
||||
const median = medianLen % 2 === 0
|
||||
? (dataForMedian[medianLen / 2 - 1] + dataForMedian[medianLen / 2]) / 2
|
||||
: dataForMedian[Math.floor(medianLen / 2)];
|
||||
|
||||
// 根据中位数确定容差百分比,延迟越小容差越大
|
||||
let tolerancePercent;
|
||||
if (median <= 10) {
|
||||
tolerancePercent = 0.50; // 50%
|
||||
} else if (median <= 30) {
|
||||
tolerancePercent = 0.35; // 35%
|
||||
} else if (median <= 50) {
|
||||
tolerancePercent = 0.25; // 25%
|
||||
} else if (median <= 100) {
|
||||
tolerancePercent = 0.20; // 20%
|
||||
} else {
|
||||
tolerancePercent = 0.15; // 15%
|
||||
}
|
||||
|
||||
const min = sortedData[0];
|
||||
const max = sortedData[len - 1];
|
||||
|
||||
// console.log(min, max, median, sortedData);
|
||||
|
||||
return {
|
||||
threshold,
|
||||
mean,
|
||||
median,
|
||||
tolerancePercent,
|
||||
min,
|
||||
max,
|
||||
};
|
||||
|
||||
Loading…
Reference in New Issue
Block a user