🪄 优化削峰的计算,尽量切掉与平均值不匹配的数据

This commit is contained in:
hi2hi 2025-11-11 11:38:04 +08:00
parent cf1e7cf9fd
commit da35150a8d
2 changed files with 89 additions and 43 deletions

View File

@ -280,13 +280,6 @@ const monitorChartData = computed(() => {
* - valueList {Array}: 包含以下内容的对象列表 * - valueList {Array}: 包含以下内容的对象列表
* - name {String}: 监控名称 * - name {String}: 监控名称
* - data {Array}: [时间戳, 平均延迟] 对的数组 * - data {Array}: [时间戳, 平均延迟] 对的数组
*
* 该函数执行以下步骤
* 1. 遍历监控数据以分类和过滤平均延迟
* 2. 如果启用了削峰则应用削峰以过滤异常值
* 3. 构建监控名称到其各自时间戳和平均延迟的映射
* 4. 将映射转换为监控名称时间戳和平均延迟数据的列表
* 5. 删除重复的时间戳并对其进行排序
*/ */
const cateMap = {}; const cateMap = {};
monitorData.value.forEach((i) => { monitorData.value.forEach((i) => {
@ -319,27 +312,30 @@ const monitorChartData = computed(() => {
} }
} }
const { const {
threshold, median,
mean, tolerancePercent,
max, } = peakShaving.value ? getThreshold(showAvgDelay) : {};
min,
} = peakShaving.value ? getThreshold(showAvgDelay, 2) : {};
showCreateTime.forEach((o, index) => { showCreateTime.forEach((o, index) => {
if (Object.prototype.hasOwnProperty.call(dateMap, o)) { if (Object.prototype.hasOwnProperty.call(dateMap, o)) {
return; return;
} }
const avgDelay = showAvgDelay[index]; const avgDelay = showAvgDelay[index];
// 0
if (avgDelay === null || avgDelay === 0) {
dateMap[o] = undefined;
return;
}
//
if (peakShaving.value) { if (peakShaving.value) {
if (avgDelay === 0) { //
dateMap[o] = null; const threshold = median * tolerancePercent;
return; //
} if (Math.abs(avgDelay - median) > threshold) {
// dateMap dateMap[o] = undefined;
if (Math.abs(avgDelay - mean) > threshold && max / min > 2) {
return; return;
} }
} }
dateMap[o] = avgDelay ? (avgDelay).toFixed(2) * 1 : null; dateMap[o] = (avgDelay).toFixed(2) * 1;
}); });
}); });
let dateList = []; let dateList = [];
@ -362,9 +358,11 @@ const monitorChartData = computed(() => {
showCates.value[id] = true; showCates.value[id] = true;
} }
// //
const validAvgs = avgs.filter((a) => a[1] !== 0 && a[1] !== null); // (undefined)
const realAvgs = avgs.filter((a) => a[1] !== undefined);
const validAvgs = realAvgs.filter((a) => a[1] !== 0 && a[1] !== null);
const avg = validAvgs.reduce((a, b) => a + b[1], 0) / validAvgs.length; const avg = validAvgs.reduce((a, b) => a + b[1], 0) / validAvgs.length;
const over = avgs.filter((a) => a[1] !== 0 && a[1] !== null).length / avgs.length; const over = validAvgs.length / realAvgs.length;
const cateItem = { const cateItem = {
id, id,
name: i, name: i,
@ -568,6 +566,12 @@ onUnmounted(() => {
justify-content: space-between; justify-content: space-between;
gap: 10px; gap: 10px;
@media screen and (min-width: 768px) {
position: sticky;
top: var(--layout-header-height);
z-index: 1000;
}
.module-title { .module-title {
width: max-content; width: max-content;
height: 30px; height: 30px;

View File

@ -1,33 +1,75 @@
import uniqolor from 'uniqolor'; import uniqolor from 'uniqolor';
/** /**
* 计算数据的阈值和平均值 * 计算数据的统计信息使用截尾中位数作为基准值
* 根据平均延迟的不同范围使用不同的容差百分比进行削峰
* *
* @param {number[]} data - 要计算的数据数组 * @param {number[]} data - 要计算的数据数组
* @param {number} [tolerance=2] - 容差倍数默认值为2 * @returns {{median: number, tolerancePercent: number, min: number, max: number}}
* @returns {{threshold: number, mean: number}} 返回包含阈值和平均值的对象 * 返回包含统计信息的对象
* @property {number} threshold - 计算得到的阈值 * @property {number} median - 截尾中位数(去掉极端值后的中位数)
* @property {number} mean - 数据的平均值 * @property {number} tolerancePercent - 根据中位数计算的容差百分比
* @property {number} min - 最小值
* @property {number} max - 最大值
*/ */
export function getThreshold(data, tolerance = 2) { export function getThreshold(data) {
// 计算数据的平均值 // 过滤掉null和0的数据只对有效延迟值计算统计量
const mean = data.reduce((sum, value) => sum + (value || 0), 0) / data.length;
// 计算数据的方差
const variance = data.reduce((sum, value) => sum + ((value || 0) - mean) ** 2, 0) / data.length;
// 计算标准差
const stdDev = Math.sqrt(variance);
// 计算阈值
const threshold = tolerance * stdDev;
// 过滤掉值为0的数据
const filteredData = data.filter((value) => value !== 0 && value !== null); const filteredData = data.filter((value) => value !== 0 && value !== null);
// 计算过滤后数据的最小值
const min = Math.min(...filteredData); if (filteredData.length === 0) {
// 计算过滤后数据的最大值 return {
const max = Math.max(...filteredData); median: 0,
// 返回包含阈值、平均值、最小值和最大值的对象 tolerancePercent: 0.2,
min: 0,
max: 0,
};
}
// 排序数据
const sortedData = [...filteredData].sort((a, b) => Math.ceil(a) - Math.ceil(b));
const len = sortedData.length;
// 计算需要裁剪的数量10%
const trimCount = Math.floor(len * 0.1);
// 用于计算中位数的数据如果10%的数量>=1则去掉最大和最小的10%
let dataForMedian;
if (trimCount >= 1) {
// 截尾去掉最小的10%和最大的10%
dataForMedian = sortedData.slice(trimCount, len - trimCount);
} else {
// 数据量太少,不裁剪
dataForMedian = sortedData;
}
// 计算截尾中位数
const medianLen = dataForMedian.length;
const median = medianLen % 2 === 0
? (dataForMedian[medianLen / 2 - 1] + dataForMedian[medianLen / 2]) / 2
: dataForMedian[Math.floor(medianLen / 2)];
// 根据中位数确定容差百分比,延迟越小容差越大
let tolerancePercent;
if (median <= 10) {
tolerancePercent = 0.50; // 50%
} else if (median <= 30) {
tolerancePercent = 0.35; // 35%
} else if (median <= 50) {
tolerancePercent = 0.25; // 25%
} else if (median <= 100) {
tolerancePercent = 0.20; // 20%
} else {
tolerancePercent = 0.15; // 15%
}
const min = sortedData[0];
const max = sortedData[len - 1];
// console.log(min, max, median, sortedData);
return { return {
threshold, median,
mean, tolerancePercent,
min, min,
max, max,
}; };